
CS101 Introduction to Computing

Lecture 8
Binary Numbers & Logic Operations



The focus of the last lecture was 

on the microprocessor
• During that lecture we learnt about the function of 

the central component of a computer, the 

microprocessor

• And its various sub-systems

– Bus interface unit

– Data & instruction cache memory

– Instruction decoder

– ALU

– Floating-point unit

– Control unit



Learning Goals for Today

1. To become familiar with number system used by 

the microprocessors - binary numbers

2. To become able to perform decimal-to-binary

conversions

3. To understand the NOT, AND, OR and XOR logic 

operations – the fundamental operations that are 

available in all microprocessors



BINARY

(BASE 2)

numbers



DECIMAL

(BASE 10)

numbers



Decimal (base 10) number system 

consists of 10 symbols or digits

0  1  2  3  4 

5  6  7  8  9 



Binary (base 2) number system 

consists of just two



Other popular number systems

• Octal

– base = 8

– 8 symbols (0,1,2,3,4,5,6,7)

• Hexadecimal

– base = 16

– 16 symbols (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F)



Decimal (base 10) numbers are 

expressed in the positional notation

4202 = 2x100 + 0x101 + 2x102 + 4x103

The right-most is the least significant digit

The left-most is the most significant digit



Decimal (base 10) numbers are 

expressed in the positional notation

4202 = 2x100 + 0x101 + 2x102 + 4x103

1’s multiplier

1



Decimal (base 10) numbers are 

expressed in the positional notation

4202 = 2x100 + 0x101 + 2x102 + 4x103

10’s multiplier

10



Decimal (base 10) numbers are 

expressed in the positional notation

4202 = 2x100 + 0x101 + 2x102 + 4x103

100’s multiplier

100



Decimal (base 10) numbers are 

expressed in the positional notation

4202 = 2x100 + 0x101 + 2x102 + 4x103

1000’s multiplier

1000



Binary (base 2) numbers are also

expressed in the positional notation

10011 =1x20 + 1x21 + 0x22 +0x23 + 1x24

The right-most is the least significant digit

The left-most is the most significant digit



Binary (base 2) numbers are also

expressed in the positional notation

10011 =1x20 + 1x21 + 0x22 +0x23 + 1x24

1’s multiplier

1



Binary (base 2) numbers are also

expressed in the positional notation

10011 =1x20 + 1x21 + 0x22 +0x23 + 1x24

2’s multiplier

2



Binary (base 2) numbers are also

expressed in the positional notation

10011 =1x20 + 1x21 + 0x22 +0x23 + 1x24

4’s multiplier

4



Binary (base 2) numbers are also

expressed in the positional notation

10011 =1x20 + 1x21 + 0x22 +0x23 + 1x24

8’s multiplier

8



Binary (base 2) numbers are also

expressed in the positional notation

10011 =1x20 + 1x21 + 0x22 +0x23 + 1x24

16’s multiplier

16



Counting 

in Decimal
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Counting 

in Binary



Why binary?
Because this system is natural for digital computers

The fundamental building block of a digital computer –

the switch – possesses two natural states, ON & OFF.

It is natural to represent those states in a number 

system that has only two symbols, 1 and 0, i.e. the 

binary number system

In some ways, the decimal number system is natural

to us humans.  Why?



binary digit



Byte = 8 bits



Decimal      Binary 
conversion



Convert 75 to Binary
752

37 12

18 12

9 02

4 12

2 02

1 02

0 1

1001011

remainder



Check

1001011 = 1x20 + 1x21 +0x22 + 1x23 +

0x24 + 0x25 +1x26

= 1 + 2 + 0 + 8 + 0 + 0 + 64

= 75



Convert 100 to Binary
1002

50 02

25 02

12 12

6 02

3 02

1 12

0 1

1100100

remainder



That finishes our first topic - introduction

to binary numbers and their conversion

to and from decimal numbers

Our next topic is …



Boolean 

Logic 

Operations



Let x, y, z be Boolean 

variables.  Boolean variables can 

only have binary values i.e., they can 

have values which are either 0 or 1

For example, if we represent the state of 

a light switch with a Boolean variable x, 

we will assign a value of 0 to x when the 

switch is OFF, and 1 when it is ON



A few other names for the states 

of these Boolean variables

0 1

Off On

Low High

False True



We define the following logic operations 

or functions among the Boolean variables

Name Example Symbolically

NOT y = NOT(x) x´

AND z = x AND y x · y

OR z = x OR y x + y

XOR z = x XOR y x  y



We’ll define these operations with the help of 

truth tables

what is the truth table

of a logic function

A truth table defines the output of a 

logic function for all possible inputs

?



Truth Table for the NOT Operation

(y true whenever x is false)

x y = x´

0

1



Truth Table for the NOT Operation

x y = x´

0 1

1 0



Truth Table for the AND Operation

(z true when both x & y true)

x y z = x · y

0 0

0 1

1 0

1 1



Truth Table for the AND Operation

x y z = x · y

0 0 0

0 1 0

1 0 0

1 1 1



Truth Table for the OR Operation

(z true when x or y or both true)

x y z = x + y

0 0

0 1

1 0

1 1



Truth Table for the OR Operation

x y z = x + y

0 0 0

0 1 1

1 0 1

1 1 1



Truth Table for the XOR Operation
(z true when x or y true, but not both)

x y z = x  y

0 0

0 1

1 0

1 1



Truth Table for the XOR Operation

x y z = x  y

0 0 0

0 1 1

1 0 1

1 1 0



Those 4 were the fundamental logic operations.  

Here are examples of a few more complex situations

z = (x + y)´

z = y · (x + y)

z = (y · x)
w

STRATEGY:  Divide & Conquer



x y x + y z = (x + y)´

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

z = (x + y)´



x y x + y z = y · (x + y)

0 0 0 0

0 1 1 1

1 0 1 0

1 1 1 1

z = y · (x + y)



x y w y · x z = (y · x)
w

0 0 0 0 0

0 0 1 0 1

0 1 0 0 0

0 1 1 0 1

1 0 0 0 0

1 0 1 0 1

1 1 0 1 1

1 1 1 1 0

z = (y · x) w



Number of rows in a truth table?

2
n

n = number of input variables



Assignment # 3

A. Convert the following into binary numbers:

i. The last three digits of your roll number

ii. 256

B. x, y & z are Boolean variables. Determine the truth 
tables for the following combinations:

i. (x · y) + y

ii. (x  y)´ + w

Consult the CS101 syllabus for the submission  
instructions & deadline



What have we learnt today?

1. About the binary number system, and how it differs

from the decimal system

2. Positional notation for representing binary and 

decimal numbers

3. A process (or algorithm) which can be used to 

convert decimal numbers to binary numbers

4. Basic logic operations for Boolean variables, i.e. 

NOT, OR, AND, XOR, NOR, NAND, XNOR

5. Construction of truth tables (How many rows?)



Focus of the Next Lecture

Next lecture will be the 3rd on Web dev

The focus of the one after that, the 10th lecture, 

however, will be on software.  During that 

lecture we will try:

– To understand the role of software in computing

– To become able to differentiate between system

and application software
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